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(i) cip-midpoint

: 0.48
(R2: 0.97)

Figure 1: Rank-Frequency plots of open-ended student responses to various assignments, along with the 𝑅2 of the linear
log-rank-log-frquency fit. (See Section 3 and Section 8 for more detail.) Plots are ordered by the fitted Zipf exponent 𝛼 . The
Zipfian approximations were performed from the 10th most frequent response up to the infrequent tail (green).

ABSTRACT
Are there structures underlying student work that are universal
across every open-ended task? We demonstrate that, across many
subjects and assignment types, the probability distribution under-
lying student-generated open-ended work is close to Zipf’s Law.
Inferring this latent structure for classroom assignments can help
learning analytics researchers, instruction designers, and educators
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understand the landscape of various student approaches, assess the
complexity of assignments, and prioritise pedagogical attention.
However, typical classrooms are way too small to witness even
the contour of the Zipfian pattern, and it is generally impossible
to perform inference for Zipf’s law from such small number of
samples. We formalise this difficult task as the Zipf Inference Chal-
lenge: (1) Infer the ordering of student-generated works by their
underlying probabilities, and (2) Estimate the shape parameter of
the underlying distribution in a typical-sized classroom. Our key
insight in addressing this challenge is to leverage the densities of
the student response landscapes represented by semantic similarity.
We show that our “Semantic Density Estimation” method is able
to do a much better job at inferring the latent Zipf shape and the
probability-ordering of student responses for real world education
datasets.
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1 INTRODUCTION
Open-Ended Questions are a type of learning assessment in which a
student is asked to freely construct an answer to a problem. The
format of the responses can be diverse, ranging in complexity from
numeric values and short answers with a few words, to complex es-
says and program codes. Responses to these types of questions often
reflect rich aspects of student thinking that closed-form questions
cannot afford to capture. For this reason, open-ended questions
serve as vital assessment tools that offer instructors a deep under-
standing of each student in a classroom [5, 20].

The constructive nature of these questions often elicit a highly
diversified set of responses, which is why in typical-sized class-
rooms, every student turns in a highly unique response. In larger
classes, interesting probabilistic patterns emerge that are present
but not visible in a small-sized classrooms. It has been noted in
some occasions [33, 37] that the distribution of student-generated
works for certain assignments in large-scale classes appeared to
follow Zipf’s law. A probability distribution is said to follow Zipf’s
law when the the probability of the 𝑟 -th most probable outcome
follows an inverse power-law with respect to 𝑟 . In this case, the
probability of outcome𝑤 is proportional to

𝑝 (𝑤) ∝ 1
rank(𝑤)𝛼 (1)

where rank(𝑤) is the rank of the outcome𝑤 when all outcomes are
ordered by their probabilities, and 𝛼 > 0 is the exponent parameter
that determines the shape of the distribution. Graphically, this
results in a linear relationship between log-rank and log-probability
with slope −𝛼 .

The Zipfian student work observation introduces many fun-
damental questions about the structures in student-constructed
responses: Are the Zipf-like observations global across different
subjects and assignment types? What practical implications does
estimating these patterns bear for everyday classrooms? Can we
infer these structures even when most students would submit a
unique response? And lastly, why do such structures emerge in
student responses?

And yet, the analysis and inference of Zipf’s law in student
responses are not an easy endeavor. Most importantly, Zipfian pat-
terns are impossible to observe directly in typical sized classrooms
with fewer than 100 students. This is because the heavy-tail of
Zipf’s law causes the majority of the responses to appear only once
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Figure 2: Zipf Inference Challenge: given open-ended student
responses (1) order them by their intrinsic probability, and
(2) estimate the Zipf exponent of the assignment.

in a sample. Observations of these patterns has only recently been
made possible with the growth of massive open online courses.

In this paper, we will explain the importance of Zipf’s law and
take the first steps at addressing the aforementioned fundamental
questions. We will approach this seemingly impossible inference
problem with the key insight of analyzing the density of the stu-
dent response landscapes encoded in a metric space representing
semantic similarity.

Concretely, our work delivers the following contributions1:
(1) For the first time, we observe that Zipfian patterns in student

works generalize across various subjects and open-ended as-
signment types (Figure 1). We explain the practical implica-
tions this has for learning analytics researchers, instruction
designers, and educators.

(2) We formally define the Zipf Inference Challenge (Figure 2)
which consists of (1) estimating the latent probability order-
ing and (2) inferring the Zipf exponent from few student
responses observed in regular classrooms.

(3) We provide a generic framework called Semantic Density Es-
timation for addressing Zipf inference challenge with the key
intuition of using density estimation in semantic embedding
space. We demonstrate the effectiveness of this framework
on multiple real-world datasets and show that it outperforms
the baseline methods.

(4) We take initial steps in proposing a theoretical explanation
for how Zipfian patterns could emerge from the open-ended
student response process.

2 WHY DOES ZIPF’S LAWMATTER IN
EDUCATION?

Not only are Zipfian patterns in open-ended student work intrinsi-
cally valuable as a beautiful natural phenomenon, but these patterns
may also convey many practical values for learning analytics re-
searchers, learning designers, and practitioners.

1The code for our inference algorithm and theoretical analysis can be found at:
https://github.com/yunsungkim0908/student-zipf-theory
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First, the existence of Zipf’s law has a significant consequence
for the scalability of student analytics methods and algorithms -
an important consideration for learning analytics and educational
technology researchers. The long-tail of the response distribution
implies that an overwhelming fraction of the observed responses
are likely to be observed exactly once, regardless of the size of the
samples. (For instance, see Figure 4). This immediately has a huge
impact on grading and feedback generation. For example in 2014,
Code.org, a massive open online course (MOOC) for programming,
launched an initiative to crowdsource hundreds of thousands of
instructors to provide feedback to student-generated programs,
with the goal of labelling all possible answers. For short programs
this seemed feasible, but it took thousands of human hours of
labelling to realize that the space of unique responses was too vast
for human effort to even scratch the surface. This initiative was
cancelled in 2 years and hasn’t been reproduced since [53]. Had
it been known that the response distribution was Zipf-like, these
efforts would have been reconsidered early on.

Inferring the Zipf exponent parameter 𝛼 allows one to quan-
tify such heavy-tailedness of the underlying distribution. Large 𝛼
results in a highly skewed distribution where most probability is
concentrated on the high-rank responses, whereas smaller 𝛼 in-
dicates a distribution that is closer to uniform and heavier-tailed.
(Figure 1.) Therefore, estimating 𝛼 allows one to anticipate the
amount of unique responses that would appear in samples from
this distribution, which can be used to schedule human efforts or
anticipate the efficiency of new analytics algorithms. 𝛼 may also
be used to measure the complexity (or the degree of individual
variability in the responses) of an assignment and compare it across
different assignments, a hypothesis we develop in Section 3 based
on real student response data.

Next, educators and instruction designers may benefit much
from inferring the rank-ordering of the individual responses by
their underlying Zipfian probabilities.2 These probabilities indicate
how often one would see the exact same response if the class size
were to be much larger, and algorithmically inferring them can
help educators quickly build insights into the rank-ordering of
student approaches and misconceptions. This can be useful for
pedagogical tasks such as noticing [27] and anticipating [34, 49]
student responses, and prioritizing instructor feedback. For instance,
imagine teaching an introductory probability class where we ask
50 students to write a short program and most of them turn in
answers that are unique. (See Figure 3). Furthermore, assume that
we were able to algorithmically determine that, if the class were
to be infinitely large instead of 50, responses (a), (b), and (c) in
Figure 3 would be the most frequently observed responses among
the student responses that used a for-loop. This immediately helps
instructors notice that finding the complementary probability might
be a prevalent mistake in the class and is worth addressing during
lecture. Also, since failing to apply an important probability concept
(the product rule) is more likely among students than a minor off-
by-one error, the instructors may want to change future instruction
plans to dedicate more time to review this important concept, and

2We leave the empirical validation of the potential benefits in real classrooms as a
promising direction for future research.

def birthday(n):
prob = 1
for i in range(n):

prob *= (1 - i/365)
return 1 - prob

def birthday(n):
prob = 1
for i in range(n):

prob -= (1 - i/365)
return prob

def birthday(n):
prob = 1
for i in range(n):

prob *= (1 - (i+1)/365)
return prob

(a) Rank 2: Probability of a complementary event

The Birthday Problem. Write a function that 
computes the probability that, in a set of n randomly
chosen people, at least two will share a birthday.
Examples of student answers using a for-loop:

def birthday(n):
prob = 1
for i in range(n):

prob * 1/365

(b) Rank 5: Misapplies a core probability concept

(c) Rank 9: Makes a minor off-by-one mistake

(d) Rank 46: Wrong use of programming constructs

Figure 3: Example of an open-ended assignment, student
responses, and the probability ranks of the responses within
the class.

instruction designers may want to reconsider whether the current
curriculum sufficiently covers it.

Moreover, rank-order inference will also tell us which responses
are closer to the “long-tail” that are intrinsically less common. These
responses would often benefit most from a prioritized follow-up
from the instructor, either to address the idiosyncratic error state of
the student (for instance, by suggesting a programming review for
response (d)) or to analyze and address unanticipated approaches
to the problem.

Similar use cases exist when piloting a large-scale course with a
handful of students before it goes live. However, without algorith-
mically inferring the rank-ordering, human instructors would need
to read, analyze, and organize these responsesmanually before they
can engage in these activities and draw insights about students.

3 ZIPFIAN STRUCTURES IN STUDENTWORK
In previous works, a handful of assignments have been identified
as Zipf-like. Here we gather a larger collection of open-ended as-
signments where there are enough submissions to observe if there
is a Zipfian structure, and analyze what the fitted Zipf exponent
parameters convey about the properties of the assignment.

Figure 1 plots the ranks and (relative) frequencies of student
responses to 9 different assignments in log scale. These datasets
were collected in the following context (See Table 1 for a detailed
summary of each dataset):
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Name Total
Responses

Unique
Responses

Avg.
Length 𝛼 Problem Description

hoc4 1,128,916 3,630 52.4 2.08 Simple maze with 3 types of basic navigator blocks
math-numeric 49,847 680 - 1.55 Grade-2 level math question with numeric answer
citizenship 697 353 4.8 1.37 Short response question about a basic US history fact

hoc18 1,253,776 56,612 78.0 1.25 Maze with navigators plus “while” and “if” blocks
cip-piles 22,828 3,003 83.4 1.21 Move robot along a straight line and repeat a simple sub-task

p4 179,229 38,034 49.8 0.98 Draw nested shapes with “for” and “variable” blocks in 2D grid
cip-shelter 22,824 4,027 110.8 0.95 Move robot through uneven obstacles. Hints on modularization.
cip-frame 22,825 6,148 150.9 0.88 Move robot and execute nested tasks with variables. No hint

cip-midpoint 87,780 63,821 - 0.55 Intermediate progress for a robot assignment
Table 1: Summary of datasets used in our experiment, ordered by Zipf exponent 𝛼 . More complex tasks have smaller exponents.
The fitted exponent parameter 𝛼 provides a way to compare the complexity of tasks across problem types (Section 3). Average
length is the average number of program or word tokens. (Block programs were first translated into python syntax. See
Section 6).

Block Programming (hoc4, hoc18, p4): Code.org is an on-
line programming education platform aimed at teaching
beginner programmers the elementary concepts of program-
ming. The data we analyzed are student responses to drag-
and-drop, block-based programming maze and drawing puz-
zles, each with different task descriptions and programming
primitives allowed. These puzzles were ordered in such a
way that the programming concepts involved in each puzzle
were built up incrementally (hoc4→ hoc18→ p4).

General Python Syntax Programming (CIP): In 2020, Stan-
ford University launched an introductory online program-
ming class called Code-in-Place (CIP) [35], designed to deliver
computing education at the level of Stanford University’s
introductory Python programming course to a global audi-
ence in the context of COVID-19. In several assignments,
students were asked to write programs in general Python
syntax that manipulate a virtual robot on a 2D maze grid
and execute small tasks. Among these assignments, piles and
shelter were “warm-up” problems, while frame was a regular
assignment. Although the solution to shelter involved more
steps, students were provided with hints on how to modular-
ize the code with custom functions. No hints were provided
for frame. Similar to Code.org assignments, CIP assignments
were also ordered (piles → shelter → frame) according to
their incremental build-up of concepts.

Citizenship Test This dataset has crowdsourced [4] short-
answer responses to a US citizenship test. We chose the
most challenging question as measured by [40]: “What is
one reason the original colonists came to America?”

Grade-School Math Word Problem This is a dataset of nu-
merical responses to an the elementary school math word
problem from an onlinemathematics learning platform called
Beast Academy, hosted by the Art of Problem Solving. We
focus on the problem with the largest number of responses,
which is a 2nd grade math word problem on digits and count-
ing: “How many different two-digit numbers have 0 as a
digit?”

For each empirical rank-frequency distribution, we found an ap-
proximation to Zipf’s law by conducting linear regression between
log-rank and log-frequency for samples in the “body” that ranked
below the 10th most frequent and appeared at least 3 times. The
quality of this approximation was measured by the coefficient of
determination (𝑅2) for each fit. (We defer a more detailed discussion
about the method of this analysis to Section 8.) The high 𝑅2 values
(> 0.96) for all datasets in Figure 1 suggest that Zipf’s law does
yield a good approximation to these distributions. Similar to the
observations in [37], most Zipfian patterns become visibly appar-
ent after the 10th most frequent submission and are particularly
striking for a wide range of ranks leading to the tail of the dataset.

Zipf-like patterns in studentwork also appear to generalize across
a wide range of domains and assignment types. Notice that the ex-
ponent parameter also inversely correlates with the “complexity” of
the assignments, and is comparable across assignments. For instance,
the fitted exponent parameters in both Code.org and CIP align with
the ordering of the assignments within each curriculum and the
incremental development of the associated programming concepts.
Also, CIP assignments are generally more complex than assign-
ments from Code.org because students were allowed to use any
Python programming functionality, whereas students in Code.org
were restricted to using block-based programs. This aligns with the
fact that CIP assignments generally have smaller 𝛼 than Code.org
assignments. Our observations thus support the hypothesis that
assignments that involve more intricate tasks and allow greater
agency to students in constructing their response have smaller 𝛼 .

Do responses to even more complex and individualized assign-
ments like essay and composition questions also exhibit Zipf-like
patterns? To witness the underlying response distribution for such
assignments, one would need to sample magnitudes of more re-
sponses compared to the assignments in Table 1. However, grounded
on the above findings, we hypothesize that the ground-truth proba-
bility distributions of student responses to such complex problems
in most domains will also be well-approximated by Zipf’s law. We
call this the Student Zipf Hypothesis.
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Figure 4: Percent of outcomes that appear exactly once in a
sample from Zipf’s law with different exponents 𝛼 . Smaller
𝛼 results in a higher fraction of “singletons.”

4 THE ZIPF INFERENCE CHALLENGE
So far we have observed through a collection of large bodies of
open-ended student responses that the underlying distribution of
student work can be closely approximated by Zipf’s law. We have
also discussed how the parameters of this pattern can positively
help the research and practice of education and learning analytics.
And yet, typical classrooms are way too small to observe even
the contour of the full distribution of responses shown in Figure 1.
Taking a regular university setting as an example, it is common to
have classes of fewer than a hundred students. Due to the heavy-
tail property of Zipf’s law, however, the majority (if not all) of the
student responses will appear exactly once as in Figure 4, making
it seem almost impossible to reliably estimate their underlying
probability structures.

The Zipf Inference Challenge formalizes this difficult task of
drawing meaningful information about the ground-truth Zipf’s law
of studentwork in the face of the small-sample, heavy-tail limitation.
In this challenge, we are given a collection of student-generated re-
sponses𝑊 = {𝑤1, ...,𝑤𝑛} from a class of 𝑛 students, which consists
of𝑚 unique responses𝑈 = {𝑢1, ..., 𝑢𝑚} after removing duplicates.
These unique works have a hidden, ground-truth ordering (or per-
mutation) 𝜎∗ which ranks 𝑢𝜎∗ (𝑖 ) at rank-𝑖 and orders the unique
works by their probability masses. Without loss of generality, we
will assume that 𝜎∗ (𝑖) = 𝑖 , so that 𝑝 (𝑢1) ≥ 𝑝 (𝑢2) ≥ ... ≥ 𝑝 (𝑢𝑚) .
The challenge consists of the following two sub-tasks:

Zipf Order Inference Given the collection𝑊 of student re-
sponses and the set 𝑈 of unique responses, estimate the
ground-truth ordering 𝜎∗ of the unique student responses
by their underlying probabilities.

Zipf Exponent Estimation Given the collection of student
works 𝑊 , estimate the exponent 𝛼 (or the “slope” of the
log-rank vs log-probability relationship) in Equation 1.

4.1 Evaluating Zipf Order Inference
To measure the quality of a predicted Zipf ordering, we will use the
normalized 𝑙1 distance of the induced log probabilities. In this section,
we will define this metric in detail and motivate our choice.

The metric for measuring the quality of the predicted ordering
should be mindful of both the ordering itself and the underlying
probabilities that are associated with each student work. Consider

this worked example: we need to score the following three Zipf pre-
dictions 𝜎1, 𝜎2 and 𝜎3 for the rank-ordering of four unique student
solutions 𝑢1, 𝑢2, 𝑢3 and 𝑢4:

𝜎1 : 𝑝 (𝑢2) ≥ 𝑝 (𝑢1) ≥ 𝑝 (𝑢3) ≥ 𝑝 (𝑢4)
𝜎2 : 𝑝 (𝑢1) ≥ 𝑝 (𝑢3) ≥ 𝑝 (𝑢2) ≥ 𝑝 (𝑢4)
𝜎3 : 𝑝 (𝑢1) ≥ 𝑝 (𝑢2) ≥ 𝑝 (𝑢4) ≥ 𝑝 (𝑢3)

We can score these predictions based on our knowledge of the true
probabilities from the underlying distribution:

𝑝 (𝑢1) = 0.7, 𝑝 (𝑢2) = 0.25, 𝑝 (𝑢3) = 0.03, 𝑝 (𝑢4) = 0.02.

Here, 𝑢1 and 𝑢2 are highly probable and together comprise 95% of
the total probability mass, whereas𝑢3 and𝑢4 are much less probable
compared to the other two items.

Each of these 3 orderings has exactly one discordant pair: (𝑢1, 𝑢2),
(𝑢2, 𝑢3), and (𝑢3, 𝑢4). Taking into account the ground-truth proba-
bilities of each element, 𝜎1 and 𝜎2 should be penalized more heavily
than 𝜎3 because the probabilities of the discordant pairs in 𝜎3 are
comparable (𝑝 (𝑢3) ≈ 𝑝 (𝑢4)). Also, while the error in 𝜎1 occurs
within a group of highly probable items, the error in 𝜎2 occurs
across groups that differ by orders of magnitudes in probabilities.
Misjudging a highly improbable response to be the opposite can
be more critical in practice than misordering two highly likely
responses, so 𝜎2 should be more heavily penalized than 𝜎1.

In this light, typical rank correlation metrics such as Kendall’s
𝜏 or Spearman’s 𝜌 that only consider the relative positions within
an ordering are not suitable as metric for Zipf order inference.
Common ranking metrics such as Discounted Cumulative Gain,
Mean Reciprocal Rank, or Mean Average Precision that are used
to evaluate rankings based on the “relevance” of items to a central
query are also ill-suited for a holistic evaluation of ordering.

Instead, we will view an ordering 𝜎 as inducing a probability
distribution 𝑝𝜎 over 𝑢1, ..., 𝑢𝑚 by assigning the 𝑖-th largest prob-
ability mass 𝑝∗

𝑖
to 𝑢𝜎 (𝑖 ) , and compare this induced distribution

against the ground-truth distribution 𝑝∗. In particular, we will let
𝑝𝜎 (𝑢𝜎 (𝑖 ) ) = 𝑝∗𝑖 and use the following sum of absolute log probabil-
ity ratios (which is ℓ1 distance in log probabilities)

ℓ (𝜎 ;𝑝∗) =
𝑚∑︁
𝑖=1

�� log 𝑝∗ (𝑢𝑖 ) − log 𝑝𝜎 (𝑢𝑖 )
�� = 𝑚∑︁

𝑖=1

����log 𝑝∗ (𝑢𝑖 )𝑝𝜎 (𝑢𝑖 )

���� .
The use of log probabilities also has the effect of preventing dis-
proportionately large probabilities in the head from obscuring the
behaviors in the body and tail. Under this metric, if 𝜎 predicts rank
𝑖 for student work 𝑢 𝑗 , it is penalized more heavily when the differ-
ence in the log probabilities log𝑝∗ (𝑢𝑖 ) − log𝑝∗ (𝑢 𝑗 ) (or equivalently,
the log probability ratio log 𝑝∗ (𝑢𝑖 )

𝑝∗ (𝑢 𝑗 ) ) is larger in magnitude. Note
that the true ordering 𝜎∗ achieves the smallest possible ℓ (𝜎∗;𝑝) = 0.

To make this metric comparable across different classroom sam-
ples, we will scale it to be within [0, 1] and use the following nor-
malized ℓ1 distance in log probabilities:

ℓ̃ (𝜎 ;𝑝) = ℓ (𝜎 ;𝑝)
max𝜎 ′ ℓ (𝜎′;𝑝) ∈ [0, 1] . (2)
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4.2 Evaluating Zipf Exponent Estimation
Although Zipf Exponent Estimation is technically a regression task,
it suffices for practical purposes to reliably compare the computed
exponent parameters of different assignments instead of estimating
them in perfect scale precision. Therefore, we can measure the
quality of the estimated exponent parameter by computing the
correlation between the estimated exponent and the true exponent.

5 OUR NOVEL ZIPF INFERENCE METHOD:
SEMANTIC DENSITY ESTIMATION

Having formally defined Zipf Inference Challenge, we are now
ready to present the first method for Zipf Inference. Our proposed
method builds on the following assumption about the underlying
probability distribution of responses:

“Responses that are semantically similar
are also likely to be similar in probability-rank.”

This will motivate us to consider the idea of semantic distance that
measures semantic (dis)similarity, and we will explain how Zipf
Inference can be done based on the density of the observed unique
responses under this distance metric.

Many studies support the idea that an open-ended student re-
sponse can be modeled by a hierarchical set of decisions and choices
that were made during the response process [18, 42]. Each element
in the generated response - ranging in granularity from the global
outline to the specific word choices for essays or code components
for programming - is traceable to one of the many such decisions.
This idea of a “student decision process” (Figure 5) has previously
been implemented in the form of probabilistic context-free gram-
mars [53] or probabilistic programs [24] and has found several
pedagogical use cases such as in autonomous grading or student
feedback generation [24, 53].

It is then reasonable to think that a pair of responses that re-
sult from similar decisions would also be likely to be similar in
probability-rank. For instance in problem-solving, the set of deci-
sions resulting in common mistakes or misconceptions often di-
verge slightly (and quite predictably) from the set of decisions made
in producing the most probable responses [10, 50]. On the other
hand, uncommon responses tend to involve few highly improbable
decisions or differ in most decisions from the “common approaches,”
if not both [50].

Under this assumption, if we were to have a reasonable semantic
distance metric 𝑑 (·, ·) that measures the dissimilarities in approach,
decisions involved, and misconceptions or idiosyncrasies, responses
with high probabilities (and thus high ranks) would be close to-
gether, and are likely to form a cluster in this “semantic” space
where much of the probabilities are concentrated. This has two
consequences for the observed responses. First, many observed
responses will be drawn from this high-probability cluster and
densely populated within the sample. This suggests finding high-
rank responses by looking for responses with high sample density.
Next, when the underlying distribution is closer to uniform than
skewed (corresponding to a smaller Zipf exponent 𝛼), probabilities
will become less concentrated on the aforementioned high-density
neighborhoods. This will cause the observed responses to be more
evenly spread out over the space of possible responses, and the sam-
ple densities will vary less from the densest region to the sparsest.

Generates

Student Decision Process Student Response

Figure 5: The student decision process. Decisions made by
students (colored edges) are reflected in their responses (por-
tions with matching colors).

Therefore, we will choose a metric of dissimilarity𝑑 and consider
the sample density of the observed responses in the space defined by
𝑑 . We now crystallize this idea into the Semantic Density Estima-
tion (SDE) framework, inspired by the kernel density estimation
method [46] used for estimating densities in vector spaces based
on samples.

5.1 Kernel Density Estimation Review
Kernel Density Estimation (KDE) [46] is a popular method for esti-
mating an unknown probability density function from samples of
data in a vector space when no specific form of the density function
can be appropriately assumed. Given a set 𝑋 of observed samples,
KDE estimates the density 𝑓 (𝑥) at an input vector 𝑥 using a sum of
weights, each determined by how close 𝑥 is to each of the vectors
𝑋𝑖 ∈ 𝑋 . Points that are closer to 𝑥 contribute a larger weight to
𝑓 (𝑥), so the resulting density estimate is larger when many of the
points in the sample set are close to 𝑥 .

These weights are formally determined by a Kernel function
𝐾 , which is often a symmetric probability density function that
satisfies

∫ ∞
−∞ 𝐾 (𝑥)𝑑𝑥 = 1. In particular, the kernel estimator with

kernel 𝐾 is defined as

𝑓 (𝑥) = 1
𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

(
∥𝑥 − 𝑋𝑖 ∥

ℎ

)
, (3)

where ∥ · ∥ indicates vector norm, 𝑛 is the size of the observed
samples and ℎ is the bandwidth that scales the region of influence
for each sample point. Increasing the bandwidth causesmore distant
points to contribute to the resulting density, and thus results in a
smoother density estimate overall. Two most widely used kernels
are linear and Gaussian kernels. The kernel estimator may also be
viewed as a mixture distribution where each mixture component is
centered on 𝑋𝑖 .

When the samples are high-dimensional or come from long-
tailed distributions, having a fixed bandwidth across the entire
sample as in Equation 3 tend to introduce spurious noise in samples
with relatively low sample density [46]. Variable kernel estimation
works around this issue by setting the bandwidth of the kernel
centered on 𝑋 𝑗 to be proportional to the distance to its 𝑘-th nearest
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neighbor 𝑑 𝑗,𝑘 , thus adapting to the local density of each sample3:

𝑓 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

1
ℎ𝑑 𝑗,𝑘

𝐾

(
∥𝑥 − 𝑋𝑖 ∥
ℎ𝑑 𝑗,𝑘

)
. (4)

5.2 The Semantic Density Estimation (SDE)
Framework

Although the objective of KDE is to estimate an unknown prob-
ability density from samples, it can also be used as a measure of
empirical density within those samples. This is the core idea behind
our Semantic Density Estimation (SDE) Framework. With the notion
of semantic distance 𝑑 (·, ·) mentioned earlier, we use the following
variant of Equation 4 for the variable kernel estimator to estimate
the within-sample density for a given student work𝑤 :

𝑓 (𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

1
ℎ𝑑 𝑗,𝑘

𝐾

(
𝑑 (𝑤,𝑢𝑖 )
ℎ𝑑 𝑗,𝑘

)
, (5)

where 𝑢𝑖 ∈ 𝑈 indicates the 𝑖-th unique student work4, and vector
distance ∥𝑥 −𝑋𝑖 ∥ in Equation 4 is replaced with 𝑑 (𝑤,𝑢𝑖 ). 𝑑 (·, ·) can
then be defined in several ways:

Using a semantic vector-space embedding function. Any
semantic embedding function 𝜙 that maps student work to
a real vector can be used to define 𝑑 (𝑢, 𝑣) = ∥𝜙 (𝑢) − 𝜙 (𝑣)∥.
This is equivalent to KDE in the space defined by 𝜙 . To the
authors’ knowledge, no embedding method is yet known to
reliably reflect the problem-solving approaches in student-
generated work in any domain. As a proxy to such model,
we will use the embeddings from large-scale pre-trained se-
mantic encoders such as CodeBERT [17] and the ℓ2 distance
metric in our experiments to demonstrate the effectiveness
of SDE.

Using a generic distance metric. Even without resorting to
an explicit embedding function 𝜙 , any metric of dissimilarity
can be used as 𝑑5. As a demonstration of the potentials of
the SDE framework, we will use token edit distance as our
distance metric in our experiments, which further assumes
that similarity in decisions also correlates with syntactic
similarity.

Zipf Order Inference Method. Once we obtain the density esti-
mates 𝑓 (𝑢1), ..., 𝑓 (𝑢𝑚) for each of the𝑚 unique student responses,
it is straightforward to estimate the ordering: simply output the
ranking 𝜎 that rank-orders the density estimates, such that

𝑓 (𝑢𝜎 (1) ) ≥ 𝑓 (𝑢𝜎 (2) ) ≥ ... ≥ 𝑓 (𝑢𝜎 (𝑚) ). (6)

In practice, when a response is observed multiple times in a class-
room, this can be a strong signal that the response is highly probable.
Therefore, in the actual ordering that we output, we will first order

3Another common adaptive method is the generalized 𝑘-th nearest neighbor method,
which adapts the bandwidth to the distance of the point whose density is to be estimated
to its 𝑘-th nearest neighbor. In our experiments, we found variable kernel estimation
to perform better.
4We have found that using the de-duplicated set𝑈 of unique student work to compute
the densities empirically yields better performance than using the possibly redundant
collection𝑊 of all student work.
5Technically, 𝑓 might not be a normalized probability density over a vector space
depending on the choice of metric 𝑑 . For the purposes of Zipf inference challenge,
however, the density estimate need not be normalized.

the duplicate items according to their multiplicity in the sample set,
followed by the “singletons” ordered by the density estimates6.

Zipf Exponent Estimation Method. As mentioned earlier, we ex-
pect samples associated with smaller Zipfian exponents 𝛼 to have
more consistent sample densities across the samples. In this spirit,
our (un-scaled) exponent estimate 𝛼 will be the inter-quartile dif-
ference ratio in log densities, defined as the ratio between the
difference in log densities7 and the difference in rank of the 1st and
3rd quartile:

𝛼 =
log 𝑓 (𝑢𝜎 (𝑄1 ) ) − log 𝑓 (𝑢𝜎 (𝑄3 ) )

𝑄1 −𝑄3
. (7)

𝑄1 and𝑄3 are the indices of the 1st and 3rd quartile. Since the main
purpose of estimating Zipf exponent is to be able to compare one
assignment to another, we only require that the estimated exponent
is correlated with the true exponent.

5.3 Baseline Methods for Zipf Order Prediction
Although there is no well-defined baseline to compare SDE against,
we can consider comparing our method against the following rea-
sonable approaches for Zipf Order Inference8:

Random permutation. This elementary baselinemethodwill
randomly order the responses.

Length-based method. A common practice when skimming
student responses is to look at the length of the response
and deem abnormally long or short responses unlikely. This
baseline reflects this real-life practice and orders responses
according to the difference of its length from the average
length.

Density Estimation Tree. Density estimation tree (DET) [39]
is a method for estimating a probability density over a 𝑑-
dimensional vector space using a piece-wise constant de-
cision tree. We used DET to estimate the within-sample
densities of the responses based on the 2-dimensional PCA
projections9 of their CodeBERT embeddings, and estimated
the rank-ordering in a way similar to SDE.

6 ZIPF INFERENCE EXPERIMENTS
We now present the results of evaluating our Zipf Inference method
using 6 real student datasets: hoc4, hoc18, cip-piles, p4, cip-shelter,
and cip-frame10.

Experimental Setup. For each dataset, we simulated 300 class-
rooms of 70 students each, by subsampling (with replacement)
from the entire dataset of responses. For Zipf Order Prediction,
we computed the average ℓ1 distance in log probabilities (Equa-
tion 2) of each method (Figure 6). For Zipf Exponent Estimation, we
computed the correlation between the true exponent (fitted to the
entire dataset) and the average exponent estimates from SDE. We
6Ties in multiplicity were broken in a way that results in smaller L1 distance.
7We use log densities to mitigate for heavy-tailedness.
8Similar to SDE’s Zipf Order Inference method, the duplicate items were first ordered
according to their observed multiplicity, followed by the “singletons” sorted by each
method. Ties were also broken in the same manner.
9This was done to avoid the curse of dimensionality.
10In order to use pre-trained semantic encoders and compute token edit distance in
our experiments, the block codes in code.org datasets were first statically translated
into Python syntax.
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Figure 6: Average normalized ℓ1 for Zipf Order Prediction for each method and dataset. Error bars indicate the error of the
mean of ℓ1 distance, and black dots are averages across datasets. (Small ℓ1 distance means good performance.) SDE achieves up
to 42% decrease in average ℓ1 distance.

experimented with CodeBERT11 and Edit Distance as the semantic
distance metric, each with Gaussian and Linear kernels12.

Zipf Inference Results. Figure 6 plots the Zipf Order Prediction
performance for each method on different datasets. The datasets
are shown in decreasing order of the Zipfian exponent 𝛼 , starting
from hoc4 with the largest 𝛼 to cip-frame with the smallest. SDE
outperforms all baseline methods, and among all SDE variants, Edit
Distance with linear kernel achieves the best overall performance.
In particular, the differences in normalized L1 distance between
edit distance-based SDE and all baseline methods are statistically
significant for all datasets (p-value ≪ .0001), with SDE achieving
from 15% (in hoc4) up to 42% (in hoc18) decrease in normalized ℓ1
distance compared to the best performing baselines.
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Figure 7: Average Zipf Exponent estimates against true Zipf
exponents. Error bars indicate standard error of the mean.

11To obtain the embeddings, we concatenated the natural language description of the
problem and the student-generated response (separated by the [SEP] token), and took
the embeddings of the [CLS] token as the vector representation of each submission.
We then normalized the embeddings of the responses in the sample to have zero-mean
and unit-norm.
12For each of these 4 configurations, we tried 𝑘 ∈ {5, 10} for the neighbhorhood size
in Equation 5 and chose the value of 𝑘 with better performance.

Turning to Zipf Exponent Estimation, Figure 7 plots the true Zipf
exponent 𝛼 against the average of the estimates given by the best
performing configuration of SDE for each semantic distance met-
ric13. The average estimates of both Edit Distance and CodeBERT
are highly correlated (0.90 and 0.98 Pearson correlation) with the
true exponents, but CodeBERT has a particularly strong correlation
and smaller variation in the estimates.

While the exponent estimates of CodeBERT SDE were overall
better correlated and less noisy than the estimates from Edit Dis-
tance SDE, Edit Distance SDE consistently outperformed CodeBERT
SDE in Zipf Order Prediction for all of the datasets except hoc4. We
believe this is due the fact that CodeBERT was trained on a vastly
large space of general-purpose programs hosted on GitHub [17]. In
this space, the set of response codes written for a single assignment
only comprises a minuscule subspace, and CodeBERT is likely not
nuanced enough to tell the granular difference in semantics be-
tween a pair of student submitted codes for this reason. We believe
that a semantic distance metric that better models the similarities
at the level of the student’s cognitive problem-solving process will
achieve better Zipf Order Prediction.

7 TOWARDS A THEORETICAL EXPLANATION
OF ZIPF’S LAW IN STUDENTWORK

Why do Zipf-like patterns emerge in open-ended student works?
Although open-ended tasks involve a complex process that cannot
fit into a single generative story, studying the mechanism behind
Zipf-like structures may help researchers reveal valuable insights
about the student thought process. Studies on Zipf’s law provide
plausible accounts on how Zipfian structures can emerge in various
environments (see Section 9), but to the authors’ knowledge, none
of them are applicable to education and student problem-solving.
Will take the first elementary step in this direction by drawing
insights from the “student decision process” discussed in Section 5.

Recall from Section 5 that a student response can be mapped
to a hierarchical set of decisions. For the purposes of analyzing
the Zipfian patterns, let us consider a vastly simple version of this
model where a student works through a problem that involves

13Linear kernel was observed to perform comparably to Gaussian kernel for both
metrics.
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𝑇 decisions to be made, each having 1 correct choice and 𝑀 − 1
incorrect choices. The 𝑡-th decision, represented by the random
variable 𝑋𝑡 , can take on one of the values in {0, ..., 𝑀 − 1}. Let us
denote 𝑋𝑡 = 0 to be the “correct” choice for the 𝑡-th decision, and
values 1 through𝑀 − 1 to indicate the possible misconceptions.

Importantly, let us further assume that each student possesses a
latent ability value 𝛽 ∈ [0, 1]. At each step 𝑡 , the student chooses the
correct choice with probability 𝛽 . Otherwise, one of the incorrect
choices is chosen from a distribution 𝜋𝑡 . Then, conditioned on 𝛽 ,
𝑋𝑡 is a categorical random variable with distribution 𝑃𝑡 defined as:

𝑋𝑡 |𝛽 ∼ 𝑃𝑡 ≡ Categorical
(
𝛽, (1 − 𝛽)𝜋𝑡,1, ..., (1 − 𝛽)𝜋𝑡,𝑀−1

)
,

Finally, we will model a population of students with varying levels
of ability by assuming 𝛽 has a uniform distribution

𝛽 ∼ Uniform( [𝜀, 1 − 𝜀]), (8)

where 𝜀 is set to avoid degenerate probabilities. Putting everything
together, the probability of observing a specific decision trajectory
𝑥 = (𝑥1, ..., 𝑥𝑇 ) can be expressed as

𝑃 (𝑥) =
∫

𝑃 (𝛽)
(
𝑇∏
𝑡=1

𝑃𝑡 (𝑥𝑡 |𝛽)
)
𝑑𝛽

We will call this model the Varied Ability Student Model
(VASM). VASM is identical to a uniform mixture of individual
Fixed Ability Student Models (FASM), each of which has a fixed
ability 𝛽 that is constant across students.

7.1 Do Varied Ability Student Models Exhibit
Zipf-like Patterns?

A theoretical result from statistical physics [32, 43] states that an
exponential family latent variable model under certain conditions14
are exactly Zipfian with 𝛼 = 1 in the infinite dimensional limit.
Although VASM is an exponential family latent variable model,
it does not satisfy all the conditions in [32, 43]. Yet, even in the
finite-length regime, Zipf-like sub-structures do emerge in VASM.
Figure 8 shows the rank-frequency plot for FASMs with 𝑁 = 10
and𝑀 = 5 for a varying range of ability values, and the same plot
for the corresponding VASM15. Since the exact rank-probability
is intractable, we sampled 1 billion samples from each model and
used the rank-order of relative frequencies as a surrogate to the
true probability ordering.

It is noticeable that evenwhen each individual fixed ability model
doesn’t exhibit Zipf-like structures, VASM has an extensive range
of ranks for which rank-frequency is closer to a Zipf relationship.
The effect of “mixing abilities” becomes more apparent when we
look at the strength of the Zipfian patterns for varying lengths
of the generated trajectories. Figure 9 shows the deviation from
Zipf’s law in the body of the distribution16 for fixed and varied
ability models. To isolate the effect of mixture, we simulated FASM
for 7 identically-spaced ability values (0.2,...,0.8), and compared
them against the version of VASM in which the ability was uniform
over those 7 values. Deviation was measured by the normalized
14The natural parameters are the latent variables themselves.
15Each 𝜋𝑡 was sampled from a uniform distribution over the set of probability distri-
butions over (𝑀 − 2) elements (the (𝑀 − 2)-dimensional probability simplex).
16We took this to be from rank 103 up to the rank at which we observed fewer than 10
occurrences.
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root-mean-squared error (NRMSE) for the least squares linear fit
between log-rank and log-frequency, which allows the Zipfian fit
to be compared across distributions with different log probability
scales. The error of VASM is smaller than all FASMs for𝑀 ≥ 4 and
𝑇 ≥ 10, suggesting that mixing abilities strengthened the Zipf-like
patterns that emerge even for bounded-length decision sequences.

The varied ability student model is by no means a sufficient
account of how Zipfian patterns emerge in student work, but it
clearly suggests one possibility: a generative model that mixes
over distinct cohorts of students (which were based on ability in our
analysis) could strengthen the Zipfian patterns from each individual
cohort. This possibility is further supported by similar empirical
observations made in [1] where a mixture model was shown to
give rise to Zipfian patterns in modelling multidimensional binary
neural data.

8 DISCUSSION
Testing for Power-Law. In the past decade or so, several notable

arguments[12, 15] have been made advocating for the use of maxi-
mum likelihood estimators (MLE) and bootstrapped Monte-Carlo
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tests using Kolmogorov-Smirnov statistics to test for Goodness-of-
Fit (GoF) to power law. Since then, several studies have used this test
to demonstrate power-law fit to different datasets. Independent of
these works, we have used the coefficient of determination (𝑅2) of a
linear fit between empirical log-rank and empirical log-probability
to measure how closely Zipf’s law can approximate our empirical
distribution in our study. We explain how our analysis differs from
these works, and why the methods we employed are more suitable
for our study.

First and foremost, it must be emphasized that our objective
was not to test whether student responses exactly follow Zipf’s
Law, which is a rather strong statistical claim that the underlying
distribution has a specific form17. Instead, our goal was to demon-
strate that an approximation to Zipf’s law is reasonable, and that
this approximation can yield an insightful summary of the student
response landscape to be taken up by educators. Significantly large
𝑅2 (> 0.96) values for all 9 datasets were sufficient evidence for the
quality of the approximation to this end.

Moreover, while several principled methods exist for fitting
power-law distributions to data, the equivalent for fitting Zipf’s law
does not. This is because, although Zipf’s law is a form of power-
law between rank and frequency, the observed rank is correlated
with the observed frequencies and can vary by the specific sample
drawn. For this reason, MLE for power-law distributions in [12] or
[15] have recently been shown to yield biased estimates [38] for
Zipf’s law, but estimators developed henceforth are still known to
give unreliable estimates on real-world data [38]. While this has
led us to opt for the most intuitive procedure, advancements in the
quality of the Zipf exponent estimators will lead to a more rigorous
fitting process in future research.

Outside the Zipfian range. In more than half of the assignments in
our dataset, the fitted Zipf exponents were less than 1. Theoretically,
Zipf exponent cannot be less than 1 unless Zipf’s law holds for
only a finite region. This means that, while the Zipfian range for
such assignments can still be arbitrarily large, this range has to
be finite and the probability of the remaining ranks will be closer
to exponential decay than Zipf’s law. Where the Zipfian pattern
begins, where it ends, and how the responses are distributed outside
the Zipfian range are interesting topics for future research.

Also, both in the real-student datasets and in the simulation of
the Varied Ability Student Model, the high-probability “head” of the
distribution had quite visibly different shapes from the rest of the
distribution. Explaining and characterizing this difference remains
an open question.

9 RELATEDWORK
Zipf’s law. Many natural phenomena obey Zipf’s law, and decades-

old studies have provided explanations for them in network struc-
tures [3, 8, 21], biological evolution [54], distribution of income [11],
word frequencies in natural language [25, 47], and city popula-
tions [47]. We refer the reader to [31] for an excellent overview.
Yet, none of the aforementioned models can be adapted to yield a
satisfying account for the Zipfian patterns in student work, which
is inherently a hierarchical decision process.
17The authors have found no evidence that student responses exactly follow Zipf’s
law.

Certain sequence models have also been proven to give rise to
Zipf’s law. The simplest and the most well-known is the distribu-
tion of space-delimited words generated from a randomly typed
keyboard [7, 13, 30]. These results have also been further general-
ized to random trajectories on homogeneous finite-state Markov
chains [6]. Yet, these models are too simple to be applicable to stu-
dent work, which are results of a more complex, heterogeneous
process. To the authors’ knowledge, no explanation exists for the
emergence of Zipf’s law in cognitive models of thinking.

In the domain of statistical physics, [43] recently discovered that
multivariate latent variable exponential family models with priors
over the natural parameters converge to Zipf’s law with 𝛼 = 1 in
the limit of infinite-dimensional observations. Similar result also
holds in finite dimensions when the range of frequencies is broad
and the conditional distributions for each fixed latent variable is
pairwise disjoint [1]. [1] also shows an empirical example of neural
data where the disjointness assumption may not hold but Zipf’s
law does.

Patterns in large-scale student work. The initial observation of
Zipfian patterns in large-scale student work was made in [33],
which observed that constituent parts of code submissions (“code
phrases”) in a massive online course obey Zipf’s law. [37] further
observed that student-submitted programs in some massive pro-
gramming classrooms appeared to follow Zipf’s law. We further
observe that the Zipf observation in student-constructed responses
is generalizable across subjects and assignment types, and explain
how these patterns can be inferred and used in education.

Previous studies have analyzed different constructive patterns
within the space of student solutions [36, 41]. Recently, [24, 53]
developed methods for mapping student misconceptions to their
corresponding response outputs in order to generate synthetic,
rubric-annotated responses to train an auto-grader.

Computer-assisted pedagogical interventions. Most advances in
computer-assisted pedagogical interventions for open-ended ques-
tions have focused on efficient feedback generation and scalable
grading. Subjects of these studies include short answers [9, 23],
essays [44, 45], math problems [16, 22], and programming [24, 53].

Several works have addressed the problem of early predicting
academic performance of students [29, 52] and promptly detecting
students in need of pedagogical attention [2, 14, 26, 51, 54]. These
methods use patterns in students’ study behaviors and learning
interactions over the span of the course.

Studies have suggested that structured organization of student
submissions can greatly enhance the quality and efficiency of grad-
ing. For instance, grouping has been applied in the context of grad-
ing multiple choice questions [48], short answer questions [4], and
propositional logic [28]. [19] claims that quality of grading student
submissions could increase when they are organized by similarity.
Similarly, we believe organizing student work by their underlying
probabilities could lead to highly efficient grading and feedback.

10 CONCLUSION
We observed that, across different subjects and assignment types,
the underlying probability distribution of open-ended student work
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can be well-approximated by Zipf’s law. We explained how in-
ferring this latent structure in typical classrooms can practically
benefit learning analytics researchers, educators, and instruction
designers. We then explained why it is difficult to infer these la-
tent structures in typical classrooms, formalized the novel “Zipf
Inference Challenge” to address it, and designed the first inference
method called “Semantic Density Estimation” using the notion of
density in semantic distance space. We also discussed a potential
theoretical cause of the student Zipf pattern.

The amount of open-ended student artifacts available to the
learning analytics community and the power of analytics tools
are both growing at an unprecedented pace. Studying the patterns
emergent in these massive bodies of student artifacts will increas-
ingly yield actionable insights about the mechanism behind student
work, which could lead to tangible impacts in everyday classrooms.
We hope our work further ignites research in this exciting direction.
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